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Abstract: As background-independent toy models of quantum gravity, low-energy ef-

fective field theories of states in condensed matter physics, and a recipe for topological

invariants of closed manifolds, Topological Quantum Field Theories (TQFTs) have be-

come integral to studies in algebraic topology and mathematical physics over the last

several decades. In this brief note, we present the correspondence between 2d TQFTs

and Frobenius algebras. We will first introduce TQFTs from mathematical and physi-

cal perspectives. We then discuss aspects of the category of 2-cobordisms, followed by

the Atiyah-Segal axioms for TQFTs. We proceed by discussing commutative Frobenius

algebras and presenting a proof (sketch) of the equivalence between 2d TQFTs and com-

mutative Frobenius algebras. We conclude by pointing out some general aspects of the

theory.
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1 Introduction

In the 1980s, due to efforts lead by E. Witten and M. Atiyah among others, intricate links

between quantum physics and topology were beginning to be realized. Perhaps one of the

most monumental works of this type was Witten’s [1] where he derived various aspects of

Morse theory from considerations of supersymmetric quantum mechanics, and established

a correspondence between supersymmetric quantum field theories (QFTs) and the differ-

ential geometry of infinite dimensional manifolds. Such studies linking quantum physics,

topology, and geometry led to a new perspective in studies of low-dimensional manifolds1.

In [2], Atiyah presented a set of axioms for a TQFT, a QFT that is intrinsically topological

(based on physical models discussed by Witten in [3]). It soon became clear that TQFTs

constitute topological invariants of closed manifolds, and were of much relevance to aspects

of topology like knot invariants and the classification of manifolds.

An n-dimensional TQFT is a rule A that associates to each closed oriented smooth

(n − 1)-manifold Σ a vector space ΣA2, and to each oriented smooth n-manifold M such

that ∂M = Σ a vector MA ∈ ∂MA. Our object of interest is 2TQFTk, the category with

objects 2-dimensional TQFTs. The main result presented in this note is the classification

of the structure of 2TQFTs first noted by R. Dijkgraaf in [4].

Theorem 1.1. For any ground field k, there is an equivalence

2TQFTk ≃ cFAk,

by sending each TQFT to its valuation on the circle. Here cFAk is the category of com-

mutative Frobenius k-algebras.

The rest of this note is focused on developing the required framework to study TQFTs

and establish this correspondence. Much of the content here has been adapted from [5].

2 Cobordisms

2.1 The Category 2Cob

We always consider smooth compact manifolds (and hence omit ‘smooth’ and ‘compact’

from hereon). By a closed manifold we mean a manifold without boundary. Manifolds

1One associates to such a manifold a suitable infinite-dimensional manifold, and studies the associated

QFT. However, establishing general QFT on an axiomatic footing is a long-standing open problem.
2We adopt the notation where the image of a functor is denoted by a postfix (with A) rather than a

prefix
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with boundary are denoted by roman letters like M , while those without are denoted by

greek letters like Σ.

Definition 2.1 (In boundaries and Out-boundaries). Let M be an oriented n-manifold,

let Σ be a closed submanifold of M that is a connected component of ∂M . For x ∈ Σ, we

say w ∈ TxM is positive normal if {w} adjoined at the last position of a positively oriented

basis of TxΣ is a positively oriented basis for TxM . If a positive normal of Σ points into

(out from) M , we say Σ is an in-boundary (out-boundary) of M .

Definition 2.2 (Cobordisms). For two closed oriented (n − 1)-manifolds Σ0 and Σ1, a

cobordism (or n-cobordism) from Σ0 to Σ1 is an oriented manifold M with maps Σ0 →
M ← Σ1 such that Σ0 (Σ1) maps diffeomorphically preserving (reversing) orientations

to the in-boundary (out-boundary) of M . We write M : Σ0 → Σ1 to mean that M is a

cobordism.

Figure 2.1: An example of a 2-cobordism

For M,M ′ : Σ0 → Σ1, we say M ∼ M ′ (or that M and M ′ are equivalent) if there

exists a diffeomorphism M →M ′ such that the following commutes.

M

Σ0 Σ1

M ′

≃

The above defines an equivalence relations on cobordisms Σ0 → Σ1. We now define the

composition of two cobordisms by gluing. The main result is the following.

Theorem 2.1. Let M : Σ0 → Σ1 and M ′ : Σ1 → Σ2 be two n-cobordisms. There exists a

smooth structure on the topological manifold MM ′ := M⨿Σ1M
′ (termed the composition of

M and M ′), the gluing of M and M ′ along Σ1, such that M ↪→MM ′ and M ′ ↪→MM ′ are

diffeomorphisms onto their images. This structure is unique up to diffeomorphism fixing

Σ0,Σ1, and Σ2.

While we refer the reader to [6] for the detailed proof, we sketch a construction for

n = 2 here (the case of relevance). The first fact to note that the composition of two
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cylinders is still a cylinder and thus has a natural smooth structure given by the product

(and this structure satisfies the required axioms). Now given two cobordisms M : Σ0 → Σ1

and M ′ : Σ1 → Σ2, we take Morse functions f : M → [0, 1] and f ′ : M ′ → [1, 2] (i.e.

smooth functions with no degenerate critical points). Pick ε > 0 such that [1 − ε, 1] is

regular for f (i.e. f has no critical points in this interval) and [1, 1 + ε] is regular for f ′.

Then by the regular interval theorem (see [7] for details), we see that the preimages of these

intervals are each diffeomorphic to cylinders. Within [1 − ε, 1 + ε] we are in the instance

of gluing cylinders, and we can take the smooth structure of the composition to be the

one induced by the smooth structure associated to this cylinder. To see that this structure

is unique up to diffeomorphism fixing the respective boundaries, it is now enough to note

that between smooth 2-manifolds diffeomorphisms are isotopic to homeomorphisms (this

follows from the classification of 2-manifolds, see [7] for details).

Theorem 2.2. There is a category nCob whose objects are closed oriented (n − 1)-

manifolds and arrows (Σ0 → Σ1 for Σ0,Σ1 ∈ nCob say) are equivalence classes of cobor-

disms from Σ0 to Σ1, where the composition of two classes is given by the class of the

composite of representative cobordisms as defined in 2.1.

Proof. 2.1 proves well-definition of composition. Associativity of composition follows from

the associativity of pushouts in Top (by that we mean gluing is associative on Top). The

identity arrow for each Σ ∈ nCob is given by the class of the cylinder on Σ. To show that

this is indeed the identity for composition, it is enough to note that every cobordism is

diffeomorphic to a cylinder in a part sufficiently close to the boundary (this is again a result

of the regular interval theorem), and the composite of two cylinders is again a cylinder.

Details are left to the reader.

We conclude with this important result.

Theorem 2.3. The category 2Cob is generated by the following cobordisms under gluing

and disjoint union (i.e. parallel connection) and composition (i.e. the arrows in 2Cob are

generated upto isomorphism by these generators)3.

Figure 2.2: Generators for 2Cob - labeled (1,0), (0,1), (1,1), (1,2), and T (left to right)

3(1,0), (0,1), (1,1), and (1,2) are defined uniquely by the number of in- and out-boundaries (as well

as the fact that they have genus 0) by the classification theorem. T is defined as the unique cobordism

generated by the twist diffeomorphism 1⨿ 1 → 1⨿ 1
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Proof. We first define a skeleton for 2Cob. Recall that a skeleton of a category is a

full subcategory where no two distinct objects are isomorphic, and which contains an

object from each isomorphism class. The two key facts are as follows: every closed 1-

manifold is diffeomorphic to a finite disjoint union of circles (see [8] pp.208 for a proof of the

classification of 1-manifolds), and two closed 1-manifolds are isomorphic in 2Cob iff they

are diffeomorphic. Now let 0 be the empty 1-manifold, 1 denote a circle Σ, and n denote

the the n-fold disjoint union of Σ. By the above remarks, it follows that {0,1, · · · ,n, · · · } is
a skeleton for 2Cob. From now on we mean this skeleton when we write 2Cob. Now recall

by the classification of surfaces that two closed connected oriented surfaces with oriented

boundary are equivalent (in the sense defined above) iff they have the same genus, number

of in-boundaries, and number of out-boundaries. The idea now is that given a connected

cobordism n→m of genus g, we can build using the above generators, another connected

cobordism with n in-boundaries, m out-boundaries, and genus g. By the classification of

surfaces then, these cobordisms must lie in the same class. First we construct a connected

cobordism n → 1 of genus 0, the in-part (using ((0,1)), (1,1), and (2,1)). Then we

construct a connected cobordism 1 → 1 of genus g (using (1,2) and (2,1)). Finally we

construct a connected cobordism 1 → m of genus 0 (using (1,0), (1,1), and 1,2) and

sequentially glue the three parts together along the appropriate boundaries. Here is an

important note, by the additivity of Euler characteristic χ, the Euler characteristic of a

gluing of two 2-cobordisms is simply the sum of their Euler characteristics4. To see how this

applies, note that the in-part has χ = 2−2·0−n−1, the mid-part has χ = 2−2g−2, the out-
part has χ = 2−2 ·0−m−1. We then get that the total cobordism has χ = 2−2g−(m+n)

as needed5. The details behind this construction are left to the reader, but we provide a

visual example in A.1. This resolves the issue for connected cobordisms. Suppose M is a

Figure 2.3: An example of the above construction with n = 3, m = 4, g = 2.

disconnected cobordism with two connected components M0 and M1. We know that M0

and M1 can be written as discussed above. Although we might claim that the disjoint

union of these two normal forms is equivalent to M as a cobordism, this is not always true

4this is seen by covering the gluing M ⨿M ′ say, by M glued with a little cylinder (recall the RVT) on

the in-boundary of M ′ and vice versa, and applying additivity. The intersection of these sets is homotopy

equivalent to a disjoint union of circles and hence has χ = 0
5We’ve used χ = 2− 2g − b for an orientable manifold of genus g with b boundary components
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because of the ordering of the boundaries6 of M0 and M1. But to resolve this, we may

compose with the twist cobordism finitely many times to permute the boundaries and then

take disjoint unions of cobordisms. Since M is compact, it will have a finite number of

connected components, and we may iteratively apply this process to write M in terms of

the generators in 2.2.

2.2 Symmetric Monoidal Functors

Definition 2.3 (Symmetric Monoidal Functors from 2Cob to Vectk). For m,n ∈ 2Cob

let τm,n : m ⨿ n → n ⨿m be the unique class given by the interchange of factors, whose

existence is guaranteed by the fact that ⨿ is co-product on 2Cob (existence and uniqueness

are left as exercises to the reader). Let A : 2Cob → Vectk be a functor. Let τmA,nA :

mA⊗ nA → nA⊗mA be the unique linear map given by v ⊗ w 7→ w ⊗ v7We say that A
is symmetric monoidal if τm,nA = τmA,nA.

Definition 2.4 (Monoidal Natural Transformations). Let A,B : 2Cob→ Vectk be sym-

metric monoidal functors. We say that a natural transformation u : A → B is monoidal if

for every m,n ∈ 2Cob we have um ⊗ un = um⨿n and u0 = idk.

We conclude having defined the following category (details are left to the reader).

Theorem 2.4. The symmetric monoidal functors from 2Cob to Vectk form a category

(with objects such functors, arrows monoidal natural transformations, and composition

defined as usual) which we denote Reprk(2Cob) ≡ SymMonCat(2Cob,Vectk).

3 The Atiyah-Segal Axioms

We now present the axiomatic formulation of TQFTs introduced by Atiyah in [2].

Definition 3.1 (Topological Quantum Field Theory). Let M be an oriented n-manifold,

let Σ be a closed submanifold of M that is a connected component of ∂M . An n-dimensional

TQFT is a rule A which to each n-1 dimensional Σ associates a vector space ΣA, and to

each oriented cobordism M : Σ0 → Σ1 associates a linear map MA from M : Σ0A to Σ1A,
such that the following axioms hold.

A1: Two equivalent cobordisms must have the same image, that is:

M ∼= M ′ =⇒ M A = M ′A

A2: The cylinder on Σ, must be sent to ΣA.

6A simple example: T is diffeomorphic to a disjoint union of cylinders as a manifold, but not equivalent

to the disjoint union of cylinders as a cobordism
7Recall the universal property of the tensor product: for vector spaces A and B, their tensor product

A ⊗ B is a vector space with a bilinear map ⊗ : (a, b) → a ⊗ b from A × B to A ⊗ B such that for every

bilinear map f : A× B → C there is a unique linear map h : A⊗ B → C such that f = h ◦ ⊗., forming a

familiar commutative diagram.
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A3: (Composition of Linear Maps). Given a decomposition M = M ′M ′′,

MA = (M ′A) ◦ (M ′′A)

A4: (Multiplicative). Disjoint union goes to tensor product8 : if Σ = Σ′∐Σ′′ then

ΣA = Σ = Σ′A⊗Σ′′A. This holds for cobordisms. That is, if M : Σ0 → Σ1 is the disjoint

union of M ′ : Σ′
0 → Σ′

1 and M ′′ : Σ′
0 → Σ′′

1 then MA = M ′A⊗M ′′A.

A5: (Unital). The empty manifold Σ = ∅ must be sent to the ground field k. It

directly follows that the empty cobordism, which is the cylinder over Σ = ∅, is sent to idk.

Axioms 1-3 establish the functoriality of A : nCob→ Vectk, whereas axioms 4 and 5

say that A is a symmetric monoidal functor (so we may say 2TQFTk := Reprk(2Cob)

is the category of 2TQFTs). An essential property of TQFTs is that they compute topo-

logical invariants of manifolds: if M is an n-manifold without a boundary, then we have

a cobordism from the empty (n-1)-manifold to itself, so A associates to it a linear map

k→ k, which is a constant—a topological invariant of the manifold.

4 Commutative Frobenius Algebras

We briefly review the theory of Frobenius algebras, which have been historically well-

studied in representation and module theory [9], in working towards our ultimate goal of

introducing the correspondence between TQFTs and commutative Frobenius Algebras9.

Definition 4.1 (k-algebra). A k-algebra is a k-vector space A along with two k-linear

maps called the multiplication and unit maps respectively:

µ : A⊗A→ A η : k→ A

such the following three diagrams commute, defining ida as the identity linear map and the

diagonal maps without labels are scalar multiplication, which are canonical isomorphisms.

The axioms (associativity and unity conditions) in terms of the elements of A follow:

(xy)z = x(yz), 1x = x = x1.

Definition 4.2 (Frobenius algebras). A Frobenius algebra is a finite-dimensional k-algebra

equipped with a linear functional 10 ϵ→ k whose nullspace contains no nontrivial left ideals.

The functional ϵ ∈ A∗ is called the Frobenius form.

In particular, each Frobenius form determines an associative non-degenerate pairing

β : A⊗ A→ k, which induces two k-linear left and right isomorphisms between A and its

dual space A*, βL : A→̃A∗ and βR : A→̃A∗.

8See previous footnote.
9In our context, we note importantly that being a Frobenius Algebra pertains to having a Frobenius

form, which is distinct from a property; this corresponding form is part of the Frobenius structure which is

of interest to us.
10Recall the definition of linear functional, which is a linear map from a vector space A to the ground

field Λ : A → k and defines a hyperplane in A, Null(Λ) := {x ∈ A|xΛ = 0}.
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These are the salient features of the Frobenius structure. We briefly remark by stating

that having having no nontrivial left ideals in Null(ϵ) is equivalent to having no nontrivial

principal left ideals in Null(ϵ), by taking a non-zero element and letting that element

generate a principal ideal, so our condition can be written as (Ay)ϵ = 0 =⇒ y = 0. We

say that a Frobenius algebra (A, ϵ) is commutative if the twist map σ : A⊗A→ A⊗A is

such that σµ = µ.

Theorem 4.1. A Frobenius algebra homomorphism ϕ : (A, ϵ)→ (A′, ϵ) between two Frobe-

nius algebras is a homomorphism which is at the same time a coalgebra homomorphism

(see Appendix) preserving the Frobenius form, ϵ = ϕϵ′. Therefore, the category of Frobe-

nius algebras FAk includes the Frobenius algebras over k as objects and Frobenius algebra

homomorphisms as morphisms. cFAk is the subcategory of commutative Frobenius alge-

bras.

Frobenius algebras appear in many disciplines because they essentially define a rep-

resentation of a general topological structure whose axioms can be given as graphs, for

instance, or in our case, topological surfaces.

5 2d TQFTs and Commutative Frobenius Algebras

We are now ready to sketch a proof of the following result.

Theorem 5.1. For any ground field k, there is an equivalence

2TQFTk ≃ cFAk,

by sending each TQFT to its valuation on the circle. Here cFAk is the category of com-

mutative Frobenius k-algebras.

Proof. By C ≃ D we mean that there exist F : C → D, G : D → E, and natural

isomorphisms α : F ◦ G → idC, β : idD → G ◦ F . Here we show that there is a map
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on objects 2TQFTk → cFAk, while sketching the induced map on arrows. Ultimately

we are forced to leave the details to the reader, and to [5] pp.171. Recall 2TQFTk =

Reprk(2Cob) = SymMonCat(2Cob,Vectk). Since a symmetric monoidal functor on

2Cob is defined by its valuation on the skeleton and the generators of the source category,

we may construct the above correspondence as follows. Recall that the skeleton of 2Cob

was given by {0,1,2, · · · } where n is a disjoint union of n copies of the circle 1. Now

let A ∈ 2TQFTk and let A := 1A. Since A is symmetric monoidal, it follows that

nA = An := A ⊗ A ⊗ · · · ⊗ A. It is also forced that the cylinder on 1 is mapped to

idA : A → A and that the twist generator of 2Cob is mapped to the twist σ : A2 → A2

given by swapping vectors. Now let us denote the images of the other generators of 2Cob

as follows (using the labeling in 2.2): η : k → A is the image of (0,1), µ : A2 → A is the

image of (2,1), ϵ : A→ k is the image of (1,0), and δ : A→ A2 is the image of (1,2). This

defines A entirely, as noted initially. So a 2TQFT is prescribed by a vector space A, along

with linear maps between tensor powers of A that satisfy analogues the relations listed in

A. But these are exactly the data (regarding µ as multiplication, δ as comultiplication,

η as the unit and ϵ as the counit) defining a commutative Frobenius algebra as noted in

A.3! It follows that A is a commutative Frobenius algebra. The map taking commutative

Frobenius algebras to 2TQFTs are defined in a similar manner, and its construction is left

to the reader.

If u : A → B is a monoidal natural transformation between 2TQFTs, we find that u is

completely specified by the linear map 1A → 1B. The naturality of u will then force the

map 1A → 1B to be a Frobenius algebra homomorphism. A similar argument applies for

taking Frobenius homomorphisms to 2TQFTs.
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A Relations for 2Cob and Frobenius Algebras

Theorem A.1. The following relations hold on 2Cob.

(a) The Unit and Co-unit Relations

(b) The Frobenius Relation

(c) The Commutativity Relation

Figure A.1: A Few Relations on 2Cob. Illustrations taken from [5]

Proof. Note that in each relation, the cobordisms involved have the same topology type

– i.e. the same Euler characteristic. Recall that χ = 2 − 2g − (m + n) where g is the

genus of the surface (g = 0 here), m is the number of out-boundaries, and n the number

of in-boundaries. Therefore, by the classification of connected oriented manifolds (with

boundary), we see that the above relations hold.

We also present the following theorems without proof. See [5] pp.28 for details.

Theorem A.2. Every Frobenius algebra (A, ϵ) is also a co-algebra. I.e. to each Frobenius

algebra (A, ϵ), we can associate a unique coassociative comultiplication δ : A→ A⊗A (with

counit ϵ : A→ k) satisfying the Frobenius relation (here whenever we say co-, we just mean

the dual notion).

Theorem A.3. Let A ∈ Vectk equipped with a multiplication µ : A ⊗ A → A, unit

η : k→ A, comultiplication δ : A→ A⊗A, and counit ϵ : A→ k, satisfy the commutativity

(i.e. that the canonical twist map σ : A⊗ A→ A⊗ A is such that τµ = µ) and Frobenius

relation (represented by (b) in A.1). Then A equipped with ϵ is a commutative Frobenius

algebra.
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